Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 539, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725858

RESUMO

Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Raízes de Plantas , Raízes de Plantas/metabolismo , Triticum/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
2.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219822

RESUMO

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Oxilipinas , Solventes , Carbono
3.
Proc Natl Acad Sci U S A ; 119(36): e2202930119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037336

RESUMO

In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.


Assuntos
Marchantia , Oxilipinas , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ligantes , Marchantia/química , Marchantia/genética , Mutação , Oxilipinas/metabolismo
4.
Clin Exp Allergy ; 51(4): 594-603, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33449404

RESUMO

BACKGROUND: The major mast cell prostanoid PGD2 is targeted for therapy of asthma and other diseases, because the biological actions include bronchoconstriction, vasodilation and regulation of immune cells mediated by three different receptors. It is not known if the alternative to selectively inhibit the biosynthesis of PGD2 affects release of other prostanoids in human mast cells. OBJECTIVES: To determine the biochemical consequences of inhibition of the hematopoietic prostaglandin D synthase (hPGDS) PGD2 in human mast cells. METHODS: Four human mast cell models, LAD2, cord blood derived mast cells (CBMC), peripheral blood derived mast cells (PBMC) and human lung mast cells (HLMC), were activated by anti-IgE or ionophore A23187. Prostanoids were measured by UPLC-MS/MS. RESULTS: All mast cells almost exclusively released PGD2 when activated by anti-IgE or A23187. The biosynthesis was in all four cell types entirely initiated by COX-1. When pharmacologic inhibition of hPGDS abolished formation of PGD2 , PGE2 was detected and release of TXA2 increased. Conversely, when the thromboxane synthase was inhibited, levels of PGD2 increased. Adding exogenous PGH2 confirmed predominant conversion to PGD2 under control conditions, and increased levels of TXB2 and PGE2 when hPGDS was inhibited. However, PGE2 was formed by non-enzymatic degradation. CONCLUSIONS: Inhibition of hPGDS effectively blocks mast cell dependent PGD2 formation. The inhibition was associated with redirected use of the intermediate PGH2 and shunting into biosynthesis of TXA2 . However, the levels of TXA2 did not reach those of PGD2 in naïve cells. It remains to determine if this diversion occurs in vivo and has clinical relevance.


Assuntos
Mastócitos/efeitos dos fármacos , Prostaglandina D2/antagonistas & inibidores , Linhagem Celular Tumoral , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprosta/biossíntese , Dinoprostona/biossíntese , Sangue Fetal/citologia , Humanos , Hidrazinas/farmacologia , Ácidos Hidroxieicosatetraenoicos/biossíntese , Indóis/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Pulmão/citologia , Mastócitos/metabolismo , Prostaglandina D2/biossíntese , Pirimidinas/farmacologia , Tromboxano B2/biossíntese
5.
Artigo em Inglês | MEDLINE | ID: mdl-33450390

RESUMO

15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15-hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Pulmão/metabolismo , Mastócitos/metabolismo , Calcimicina/farmacologia , Linhagem Celular , Humanos , Imunoglobulina E/farmacologia , Pulmão/citologia , Mastócitos/citologia
6.
Plant Cell Physiol ; 61(6): 1144-1157, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32219438

RESUMO

Lipid droplets (LDs) have classically been viewed as seed storage particles, yet they are now emerging as dynamic organelles associated with developmental and stress responses. Nevertheless, their involvement in plant immunity has still been little studied. Here, we found LD accumulation in Arabidopsis thaliana leaves that induced a hypersensitive response (HR) after Pseudomonas infection. We established a protocol to reproducibly isolate LDs and to analyze their protein content. The expression of GFP fusion proteins in Nicotiana benthamiana and in transgenic Arabidopsis lines validated the LD localization of glycerol-3-phosphate acyltransferase 4 (GPAT4) and 8 (GPAT8), required for cutin biosynthesis. Similarly, we showed LD localization of α-dioxygenase1 (α-DOX1) and caleosin3 (CLO3), involved in the synthesis of fatty acid derivatives, and that of phytoalexin-deficient 3 (PAD3), which is involved in camalexin synthesis. We found evidence suggesting the existence of different populations of LDs, with varying protein contents and distributions. GPAT4 and GPAT8 were associated with LDs inside stomata and surrounding cells of untreated leaves, yet they were mainly confined to LDs in guard cells after bacterial inoculation. By contrast, α-DOX1 and PAD3 were associated with LDs in the epidermal cells of HR-responding leaves, with PAD3 mostly restricted to cells near dead tissue, while CLO3 had a more ubiquitous distribution. As such, the nature of the proteins identified, together with the phenotypic examination of selected mutants, suggests that LDs participate in lipid changes and in the production and transport of defense components affecting the interaction of plants with invading pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/análise , Proteínas de Fluorescência Verde , Proteínas Associadas a Gotículas Lipídicas/análise , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas , Proteínas Recombinantes
7.
Artigo em Inglês | MEDLINE | ID: mdl-31918007

RESUMO

Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived lipid mediators reported to be dysregulated in obstructive lung disease. In contrast to many other oxylipins, TriHOME biosynthesis in humans is still poorly understood. The association of TriHOMEs with inflammation prompted the current investigation into the ability of human granulocytes to synthesize the 16 different 9,10,13-TriHOME and 9,12,13-TriHOME isomers and of the TriHOME biosynthetic pathway. Following incubation with linoleic acid, eosinophils and (to a lesser extent) the mast cell line LAD2, but not neutrophils, formed TriHOMEs. Stereochemical analysis revealed that TriHOMEs produced by eosinophils predominantly evidenced the 13(S) configuration, suggesting 15-lipoxygenase (15-LOX)-mediated synthesis. TriHOME formation was blocked following incubation with the 15-LOX inhibitor BLX-3887 and was shown to be largely independent of soluble epoxide hydrolase and cytochrome P450 activities. TriHOME synthesis was abolished when linoleic acid was replaced with 13-HODE, but increased in incubations with 13-HpODE, indicating the intermediary role of epoxy alcohols in TriHOME formation. In contrast to eosinophils, LAD2 cells formed TriHOMEs having predominantly the 13(R) configuration, demonstrating that there are multiple synthetic routes for TriHOME formation. These findings provide for the first-time insight into the synthetic route of TriHOMEs in humans and expand our understanding of their formation in inflammatory diseases.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Eosinófilos/metabolismo , Hidroxiácidos/metabolismo , Ácidos Oleicos/metabolismo , Vias Biossintéticas , Linhagem Celular , Células Cultivadas , Eosinófilos/química , Humanos , Hidroxiácidos/análise , Isomerismo , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Ácidos Oleicos/análise
8.
Rapid Commun Mass Spectrom ; 34(8): e8665, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31734961

RESUMO

RATIONALE: Jasmonates are formed from 12-oxo-10,15(Z)-phytodienoic acid (12-OPDA) in plants and also from 12-oxo-10-phytoenoic acid (12-OPEA) in fungi. Collision-induced dissociation (CID) of [M-H]- generates characteristic product anions at m/z 165 [C11 H17 O]- . Our goal was to investigate the structure and mode of formation of this anion by CID of 12-OPDA, 12-OPEA, and 12-oxophytonoic acid (12-OPA). METHODS: We investigated the CID of the [M-H]- , [M-H-CO2 ]- , and [M-H-H2 O]- anions using electrospray ionization and MS/MS analysis of 12-OPDA, 12-OPEA, and 12-OPA, and compared the results with the data obtained with the corresponding compounds labeled with 2 H at C-6 and C-7 and with structural and side chain analogs. RESULTS: CID of [6,6,7,7-2 H4 ]12-OPEA and [6,6-2 H2 ]12-OPDA ([M-H]- and [M-H-CO2 ]- ) showed that one or two 2 H atoms were transferred to anions at m/z 165 as judged by the signal intensities of m/z 165 + 1 or 165 + 2, respectively. CID of [6,6-2 H2 ]- and [6,6,7,7-2 H4 ]-12-OPA ([M-H]- and [M-H-CO2 ]- ) yielded the loss of H2 from the cyclopentanone and displayed the transfer of one 2 H atom in analogy to 12-OPEA. In contrast, CID of [6,6,7,7-2 H4 ]12-OPEA and [6,6,7,7-2 H4 ]12-OPA [M-H-H2 O]- demonstrated the transfer of two 2 H atoms (m/z 165 + 2). All spectra obtained by CID of [6,6,7,7-2 H4 ]12-OPDA and [6,6,7,7-2 H4 ]12-oxo-9(13),15(Z)-phytodienoic acid showed that one or two additional 2 H atoms could be transferred to this anion at m/z 167 of [6,6-2 H2 ]12-OPDA due to isotope scrambling. CONCLUSIONS: CID of 12-OPDA and 12-OPEA generates cyclopentanone enolate anions at m/z 165 by charge-driven hydride transfer as a common mechanism and by bond cleavage between C-7 and C-8 of the carboxyl side chains with either gain or loss of a hydrogen atom.


Assuntos
Ciclopentanos/metabolismo , Fungos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Ânions/química , Ânions/metabolismo , Vias Biossintéticas , Ciclopentanos/química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Fungos/química , Fungos/enzimologia , Oxilipinas/química , Plantas/química , Plantas/enzimologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
Lipids ; 54(9): 543-556, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31353474

RESUMO

Fusarium oxysporum f. sp. tulipae (FOT) secretes (+)-7-iso-jasmonoyl-(S)-isoleucine ((+)-JA-Ile) to the growth medium together with about 10 times less 9,10-dihydro-(+)-7-iso-JA-Ile. Plants and fungi form (+)-JA-Ile from 18:3n-3 via 12-oxophytodienoic acid (12-OPDA), which is formed sequentially by 13S-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase (AOC). Plant AOC does not accept linoleic acid (18:2n-6)-derived allene oxides and dihydrojasmonates are not commonly found in plants. This raises the question whether 18:2n-6 serves as the precursor of 9,10-dihydro-JA-Ile in Fusarium, or whether the latter arises by a putative reductase activity operating on the n-3 double bond of (+)-JA-Ile or one of its precursors. Incubation of pentadeuterated (d5 ) 18:3n-3 with mycelia led to the formation of d5 -(+)-JA-Ile whereas d5 -9,10-dihydro-JA-Ile was not detectable. In contrast, d5 -9,10-dihydro-(+)-JA-Ile was produced following incubation of [17,17,18,18,18-2 H5 ]linoleic acid (d5 -18:2n-6). Furthermore, 9(S),13(S)-12-oxophytoenoic acid, the 15,16-dihydro analog of 12-OPDA, was formed upon incubation of unlabeled or d5 -18:2n-6. Appearance of the α-ketol, 12-oxo-13-hydroxy-9-octadecenoic acid following incubation of unlabeled or [13 C18 ]-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid confirmed the involvement of AOS and the biosynthesis of the allene oxide 12,13(S)-epoxy-9,11-octadecadienoic acid. The lack of conversion of this allene oxide by AOC in higher plants necessitates the conclusion that the fungal AOC is distinct from the corresponding plant enzyme.


Assuntos
Ciclopentanos/metabolismo , Fusarium/química , Oxirredutases Intramoleculares/metabolismo , Ácido Linoleico/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/química , Fusarium/metabolismo , Ácido Linoleico/química , Conformação Molecular , Oxilipinas/química
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1316-1322, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305246

RESUMO

Hydroperoxide lyases (HPLs) of the CYP74 family (P450 superfamily) are widely distributed enzymes in higher plants and are responsible for the stress-initiated accumulation of short-chain aldehydes. Fatty acid hydroperoxides serve as substrates for HPLs; however, details of the HPL-promoted conversion are still incompletely understood. In the present work, we report first time the micropreparative isolation and the NMR structural studies of fatty acid hemiacetal (TMS/TMS), the short-lived HPL product. With this aim, linoleic acid 9(S)­hydroperoxide (9(S)­HPOD) was incubated with recombinant melon hydroperoxide lyase (CmHPL, CYP74C2) in a biphasic system of water/hexane for 60 s at 0 °C, pH 4.0. The hexane layer was immediately decanted and vortexed with a trimethylsilylating mixture. Analysis by GC-MS revealed a major product, i.e. the bis-TMS derivative of a hemiacetal which was conclusively identified as 9­hydroxy­9­[(1'E,3'Z)­nonadienyloxy]­nonanoic acid by NMR-spectroscopy. Further support for the hemiacetal structure was provided by detailed NMR-spectroscopic analysis of the bis-TMS hemiacetal generated from [13C18]9(S)­HPOD in the presence of CmHPL. The results obtained provide incontrovertible evidence that the true products of the HPL group of enzymes are hemiacetals, and that the short-chain aldehydes are produced by their rapid secondary chain breakdown. Therefore, we suggest replacing the name "hydroperoxide lyase", which does not reflect the factual isomerase (intramolecular oxidoreductase) activity, with "hemiacetal synthase" (HAS).


Assuntos
Aldeído Liases/metabolismo , Cucurbitaceae/enzimologia , Peróxidos Lipídicos/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Linoleicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Proteínas de Plantas/metabolismo , Especificidade por Substrato
11.
J Lipid Res ; 59(10): 2025-2033, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30065010

RESUMO

Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived oxylipins with potential physiological relevance in inflammatory processes as well as in maintaining an intact skin barrier. Due to the high number of possible TriHOME isomers with only subtle differences in their physicochemical properties, the stereochemical analysis is challenging and usually involves a series of laborious analytical procedures. We herein report a straightforward analytical workflow that includes reversed-phase ultra-HPLC-MS/MS for rapid quantification of 9,10,13- and 9,12,13-TriHOME diastereomers and a chiral LC-MS method capable of resolving all sixteen 9,10,13-TriHOME and 9,12,13-TriHOME regio- and stereoisomers. We characterized the workflow (accuracy, 98-120%; precision, coefficient of variation ≤6.1%; limit of detection, 90-98 fg on column; linearity, R2 = 0.998) and used it for stereochemical profiling of TriHOMEs in bronchoalveolar lavage fluid (BALF) of individuals with chronic obstructive pulmonary disease (COPD). All TriHOME isomers were increased in the BALF of COPD patients relative to that of smokers (P ≤ 0.06). In both COPD patients and smokers with normal lung function, TriHOMEs with the 13(S) configuration were enantiomerically enriched relative to the corresponding 13(R) isomers, suggesting at least partial enzymatic control of TriHOME synthesis. This method will be useful for understanding the synthetic sources of these compounds and for elucidating disease mechanisms.


Assuntos
Cromatografia Líquida/métodos , Ácidos Graxos Insaturados/química , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Líquido da Lavagem Broncoalveolar/química , Feminino , Humanos , Doença Pulmonar Obstrutiva Crônica , Estereoisomerismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-29763661

RESUMO

The profile of activation of lipid mediator (LM) pathways in asthmatic airway inflammation remains unclear. This experimental study quantified metabolite levels of ω3-, ω6- and ω9-derived polyunsaturated fatty acids in bronchoalveolar lavage fluid (BALF) after 4-weeks of repeated house dust mite (HDM) exposure in a murine (C57BL/6) asthma model. The challenge induced airway hyperresponsiveness, pulmonary eosinophil infiltration, but with low and unchanged mast cell numbers. Of the 112 screened LMs, 26 were increased between 2 to >25-fold in BALF with HDM treatment (p < 0.05, false discovery rate = 5%). While cysteinyl-leukotrienes were the most abundant metabolites at baseline, their levels did not increase after HDM treatment, whereas elevation of PGD2, LTB4 and multiple 12/15-lipoxygenase products, such as 5,15-DiHETE, 15-HEDE and 15-HEPE were observed. We conclude that this model has identified a global lipoxygenase activation signature, not linked to mast cells, but with aspects that mimic chronic allergic airway inflammation in asthma.


Assuntos
Araquidonato 12-Lipoxigenase/imunologia , Araquidonato 15-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/imunologia , Asma/imunologia , Mediadores da Inflamação/imunologia , Prostaglandinas/imunologia , Pyroglyphidae/imunologia , Animais , Asma/patologia , Lavagem Broncoalveolar , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
13.
Nat Chem Biol ; 14(5): 480-488, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632411

RESUMO

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/química , Regulação da Expressão Gênica de Plantas , Marchantia/metabolismo , Oxilipinas/química , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Evolução Molecular , Teste de Complementação Genética , Genoma de Planta , Isoleucina/análogos & derivados , Isoleucina/química , Ligantes , Marchantia/genética , Mutagênese , Mutação , Filogenia , Reguladores de Crescimento de Plantas , Transdução de Sinais
14.
Plant Cell Environ ; 41(6): 1438-1452, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29499090

RESUMO

Stress adaptation and translational regulation was studied using noxy7 (nonresponding to oxylipins7) from a series of Arabidopsis thaliana mutants. We identified the noxy7 mutation in At1g64790, which encodes a homolog of the yeast translational regulator General Control Nonderepressible1 (GCN1) that activates the GCN2 kinase; GCN2 in turn phosphorylates the α subunit of the translation initiation factor eIF2. This regulatory circuit is conserved in yeast and mammals, in which phosphorylated eIF2α (P-eIF2α) facilitates stress adaptation by inhibiting protein synthesis. In phenotypic and de novo protein synthesis studies with Arabidopsis mutants, we found that NOXY7/GCN1 and GCN2 mediate P-eIF2α formation and adaptation to amino acid deprivation; however, P-eIF2α formation is not linked to general protein synthesis arrest. Additional evidence suggested that NOXY7/GCN1 but not GCN2 regulates adaptation to mitochondrial dysfunction, high boron concentration, and activation of plant immunity to infection by Pseudomonas syringae pv tomato (Pst). In these responses, NOXY7/GCN1 acts with GCN20 to regulate translation in a noncanonical pathway independently of GCN2 and P-eIF2α. These results show the lesser functional relevance of GCN2 and P-eIF2α in plants relative to other eukaryotes and highlight the prominent role of NOXY7/GCN1 and GCN20 in regulation of translation and stress adaptation in plants.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Alongamento de Peptídeos/química , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Alelos , Arabidopsis/microbiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Loci Gênicos , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Pseudomonas/fisiologia , Estresse Fisiológico/efeitos dos fármacos
15.
Nat Chem Biol ; 14(2): 171-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291349

RESUMO

Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the ß-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Doenças das Plantas/prevenção & controle , Alelos , Alternaria , Animais , Proteínas de Arabidopsis/metabolismo , Bioensaio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homozigoto , Insetos , Isoleucina/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1099-1109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28774820

RESUMO

The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C18-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18O atoms from [18O2-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.


Assuntos
Sistema Enzimático do Citocromo P-450 , Anêmonas-do-Mar , Animais , Catálise , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética , Especificidade por Substrato/fisiologia
17.
J Lipid Res ; 58(8): 1670-1680, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572515

RESUMO

Fungi can produce jasmonic acid (JA) and its isoleucine conjugate in large quantities, but little is known about the biosynthesis. Plants form JA from 18:3n-3 by 13S-lipoxygenase (LOX), allene oxide synthase, and allene oxide cyclase. Shaking cultures of Fusarium oxysporum f. sp. tulipae released over 200 mg of jasmonates per liter. Nitrogen powder of the mycelia expressed 10R-dioxygenase-epoxy alcohol synthase activities, which was confirmed by comparison with the recombinant enzyme. The 13S-LOX of F. oxysporum could not be detected in the cell-free preparations. Incubation of mycelia in phosphate buffer with [17,17,18,18,18-2H5]18:3n-3 led to biosynthesis of a [2H5]12-oxo-13-hydroxy-9Z,15Z-octadecadienoic acid (α-ketol), [2H5]12-oxo-10,15Z-phytodienoic acid (12-OPDA), and [2H5]13-keto- and [2H5]13S-hydroxyoctadecatrienoic acids. The α-ketol consisted of 90% of the 13R stereoisomer, suggesting its formation by nonenzymatic hydrolysis of an allene oxide with 13S configuration. Labeled and unlabeled 12-OPDA were observed following incubation with 0.1 mM [2H5]18:3n-3 in a ratio from 0.4:1 up to 47:1 by mycelia of liquid cultures of different ages, whereas 10 times higher concentration of [2H5]13S-hydroperoxyoctadecatrienoic acid was required to detect biosynthesis of [2H5]12-OPDA. The allene oxide is likely formed by a cytochrome P450 or catalase-related hydroperoxidase. We conclude that F. oxysporum, like plants, forms jasmonates with an allene oxide and 12-OPDA as intermediates.


Assuntos
Alcenos/química , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fusarium/metabolismo , Óxidos/química , Óxidos/metabolismo , Oxilipinas/metabolismo , Micélio/metabolismo , Oxirredução
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 463-473, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28093240

RESUMO

Secreted LOX from Pseudomonas aeruginosa (PA-LOX) has previously been identified as arachidonic acid 15S-lipoxygenating enzyme. Here we report that the substitution of Ala420Gly in PA-LOX leads to an enzyme variant with pronounced dual specificity favoring arachidonic acid 11R-oxygenation. When compared with other LOX-isoforms the molecular oxygen affinity of wild-type PA-LOX is 1-2 orders of magnitude lower (Km O2 of 0.4mM) but Ala420Gly exchange improved the molecular oxygen affinity (Km O2 of 0.2mM). Experiments with stereo-specifically deuterated linoleic acid indicated that the formation of both 13S- and 9R-HpODE involves abstraction of the proS-hydrogen from C11 of the fatty acid backbone. To explore the structural basis for the observed functional changes (altered specificity, improved molecular oxygen affinity) we solved the crystal structure of the Ala420Gly mutant of PA-LOX at 1.8Å resolution and compared it with the wild-type enzyme. Modeling of fatty acid alignment at the catalytic center suggested that in the wild-type enzyme dioxygen is directed to C15 of arachidonic acid by a protein tunnel, which interconnects the catalytic center with the protein surface. Ala420Gly exchange redirects intra-enzyme O2 diffusion by bifurcating this tunnel so that C11 of arachidonic acid also becomes accessible for O2 insertion.


Assuntos
Araquidonato 15-Lipoxigenase/química , Ácido Araquidônico/metabolismo , Proteínas Mutantes/química , Oxigênio/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Oxigênio/química , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Biochim Biophys Acta ; 1861(11): 1681-1692, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500637

RESUMO

Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system.


Assuntos
Lipoxigenase/química , Lipoxigenase/metabolismo , Pseudomonas aeruginosa/enzimologia , Animais , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Ácidos Graxos/metabolismo , Cinética , Leucotrienos/metabolismo , Ligantes , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Lipoxinas/biossíntese , Modelos Moleculares , Proteínas Mutantes/metabolismo , Oxirredução , Coelhos , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
20.
J Exp Bot ; 67(17): 5133-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422994

RESUMO

Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids.


Assuntos
Aldeído Liases/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Ácidos Graxos Insaturados/metabolismo , Galactolipídeos/metabolismo , Oxigenases de Função Mista/fisiologia , Aldeído Liases/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Oxigenases de Função Mista/genética , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...